Four Easy Steps to Identify Hydraulic Threads

How to identify hydraulic thread from Parker HannifinIndustrial machines and equipment are designed and manufactured in every corner of the world. The hydraulic systems alone use countless different types of fittings and adapters with different sealing methods and thread forms. While the sealing method can often be distinguished by appearance, thread forms all seem to look the same, making it difficult and time consuming to identify them when equipment modifications or repairs are needed.

Knowing the correct thread is critical for selecting the right replacement parts for maintenance and repair. Selecting the wrong part can result in damage to the thread during installation, which compromises the pressure holding capacity and seal reliability of the fitting or adapter. Quickly and properly identifying threads can help maintain safe, productive and profitable operations.

There are six types of threads commonly used on hydraulic tube fittings:

  • UN/UNF
  • BSPP (BSP, Parallel)
  • BSPT (BSP, Tapered)
  • Metric Parallel
  • Metric Tapered

Four Steps to Thread Identification

Step 1 – Determine if the thread is tapered or parallel

NPT/NPTF and BSPT are tapered threads while UN/UNF and BSPP are parallel. Metric Tapered and Metric Parallel speak for themselves. In some cases, Step 1 can be accomplished by visual inspection alone. Tapered threads get smaller in diameter toward the end of the fitting while parallel threads maintain the same diameter from start to finish. If this is not obvious by looking at the fitting, use the parallel jaws of a caliper to make a comparison. Furthermore, the presence of an O-ring or the removal of a tube nut is usually an indication that the male thread is parallel. Completion of Step 1 will eliminate three of the six possible thread forms.

                                           First step of thread ID is to determine if your threads are tapered or parallel.


Step 2 – Determine the pitch

This can be deciphered using a pitch gage for comparison or by accurately measuring and calculating the number of threads within a given distance. It is much easier to compare threads against a lighted background with a pitch gage. Because some thread pitches are relatively similar, it is advisable to try a number of gages before deciding which one fits best. The result from Step 2 will narrow down the possible thread forms even more because most have a distinct pitch. Consult the “Step 2” column in Table 1 for possible pitches.

                                          The second step to thread ID is determining pitch


Step 3 – Determine the size

Combining the results of Steps 1 and 2 will determine – or help predict, in some cases – the correct procedure for Step 3. There are two methods for determining the thread size – which to use depends on whether the thread is a pipe thread (NPT/NPTF, BSPT, BSPP) or is not a pipe thread (UN/UNF, Metric Parallel, Metric Tapered). Keep in mind that tapered (as determined in Step 1) does not necessarily mean that it is a pipe thread (e.g., Metric Tapered). Likewise, pipe thread can be parallel (e.g., BSPP).

For pipe thread, determine the size by comparing it with a nominal size profile, as shown in Figure 1 (a useful tip – pipe sizes up to 2” nominal size can be determined by measuring the actual outside diameter, subtracting ¼” then rounding-off). For non-pipe thread, the actual size can be determined by measuring the outside diameter (major diameter) with a caliper, as shown in Figure 2.

                                      The third step in determining thread ID is to determine the size. Learn all four steps to success thread identification of hydraulic fittings from Parker Hannifin.

                                                                                Figure 1

                                    Four steps to identifying hydaulic threads, step 3 is to determine the size using a caliper or profile.

                                                                                   Figure 2

Step 4 – Designate the thread

Technically, this final step does not pertain to identifying the thread. Rather, it is a method of designating the thread type in an industry standard format for others to understand. Examples of the various formats are shown in the “Step 4” column of Table 1. These typically have an indication of the thread size (whether nominal or actual), the type and – in some cases – the pitch.

Your company’s maintenance and repair professionals can put this easy four-step process to use to minimize machine downtime, avoid the expense of acquiring (and returning) incorrect parts and help ensure a safe, accident-free work environment.

Summary of How to Identify Threads

In order to differentiate between the various thread types, all that is needed is this reference chart (like table 1 below), a caliper and a thread gage. The most important tool is the thread gage (or pitch gage). This tool, which has a “saw tooth” appearance, helps determine the thread pitch. It has a specified number of serrations within a certain distance and is (usually) marked accordingly. For metric threads, the pitch is considered as the distance, in millimeters, between each thread. For all other threads, the pitch is considered as the number of threads per inch.

          Four easy steps to hydraulic thread identification using visual thread comparision (tapered or parallel), pitch and size from Parker Hannifin
*For JIS (Japanese Industrial Standards), the thread can be identified similar to BSPP and BSPT but defined with PF and PT, respectively. For example, PF 1/8 and PT 1/2.

                                                                            Table 1


Did you find this post helpful? Subscribe to TFD techConnect posts by email. TFD techConnect is a technically-focused monthly blog written for engineers specifically around motion and control engineering challenges.

If you have questions or comments, please post them and I’ll respond if warranted. If you want to talk to me directly, I can be reached at Parker Tube Fittings Division, 614.279.7070 or via email. Dowload a print-friendly version of Four Easy Steps to Identify Hydraulic Threads.

Do you also want to receive new product announcements and technology updates from Parker Tube Fittings Division? Subscribe today and stay informed


Burleigh Bailey Engineer at Parker Tube Fittings Division

Burleigh Bailey, Research & Development - Engineering Manager, Parker Tube Fittings Division





Recent Posts by Author

Best Practices: Tube Line Clamping for Hydraulic, Pneumatic and Lubrication Systems

Although you might not think of it right away, assuring adequate tube line support is critical to keeping hydraulic, pneumatic or lubrication systems efficient, leak-free and easy to maintain. Once a...

Tube Routing Tips for Hydraulic, Pneumatic and Lubrication Systems

Hydraulic, pneumatic or lubrication systems should be efficient and leak free. Sometimes, they are not, because of improper tube line routing—the result of either lack of knowledge, or corners cut...

Turn vs. Torque? How Making the Right Choice Keeps Your Hydraulic Fitting Connections Leak-Free

Question: So, does it really matter which technique you choose? In front of you is an NPTF tapered thread assembly. The recommendation is to ‘turn,’ not ‘torque,’ to assemble the connection. But all...

Comments for Four Easy Steps to Identify Hydraulic Threads

Hi.Thanks a lot for these in formations.It is very helpful fore all engineers.
Zequek Estrada
That's really convenient that all you really need to differentiate between various thread types of a reference chart. That's simpler than I imagined. It's also really nice that a chart was provided with this post.

Please note that, in an effort to combat spam, comments with hyperlinks will not be published.

Leave a comment