Fluid Gas Handling

How to Integrate Motor Speed Control for Pump Motors in Medical Devices

2 wire pwm example figure 1 Providing miniature size, light weight and low power coupled with integration capabilities for pump and motor units in medical devices provide an ideal solution for design engineers. They are now able to design a more portable device that fits all the performance their customers demand into a package that takes up less space. The next challenge is to implement. 

 

Moving from design to integration

The four most common methods for controlling the motor/pump speed of Iron Core Permanent Magnet Direct Current (PMDC) motors (often called “brush motor,”), Coreless DC brush motors, and Brushless Direct Current (BLDC) motors are discussed in our recent post Mini Subcomponents for Medical Devices Make a Big Design Difference

 

Properly integrating the motor speed control  

The following detailed descriptions will assist with properly integrating the motor speed control with whichever option is chosen. Although external PWM control is preferable when speed control is required, OEMs must decide the best control style for their application. The following detailed descriptions will assist with properly integrating the motor speed control with whichever option is chosen.

Input Voltage PWM (brush or BLDC)

This technique often referred to as “2-wire” PWM, is one of the simplest methods for controlling pump speed in a device. The basic requirement from the customer device is a PWM signal, often generated from a microcontroller and a power transistor. The input voltage to the motor is turned on and off at a high frequency so that the average power to the motor is reduced. The following image illustrates an example of a “low side” PWM driver where the ground to the motor is being switched by the “customer PCBA” to reduce the speed.

For brush motors, 2-wire PWM is the most common method for control, and very effective. It is similarly effective with BLDC motors; however, it does present some limitations. Many BLDC motors have an internal controller that must maintain a minimum voltage to operate properly. When applying a PWM cycle to the input voltage, it is also reducing the effective voltage to the controller electronics; this limits the available speed control range. Using an external PWM control can provide more range in this situation.

External PWM (BLDC only)

This is the recommended method for controlling the speed of a BLDC diaphragm pump when possible. This method provides the most dynamic control of a pump, and can also simplify the engineer’s electrical circuit in some cases because only a low current transistor is required for the switching signal.

How to Integrate Motor Speed Control for Pump Motors in Medical Devices - External PWM Example - Parker Hannifin - Precision Fluidics

Most diaphragm pumps with external PWM require an “open-drain” or “open-collector” circuit on the OEM engineer’s device PCBA to provide the PWM signal. The BLDC motors have an internal pull-up resistor so the open-drain or open-collector circuits will actively bring this voltage to ground for the low part of the PWM signal. The following illustrations show examples of recommended circuits.

Open-Drain/Open-Collector Circuit Examples

How to Integrate Motor Speed Control for Pump Motors in Medical Devices - Open Drain (nChannel) - Parker Hannifin - Precision Fluidics Division

 

0–5 Vdc Analog Speed Input (BLDC only)

In some applications, a PWM signal is not feasible or is not preferred by the system designer. Many BLDC motors offer an external analog DC signal input. In this case, the motor is provided a direct voltage to operate, but a separate low current 0 to 5 Vdc input (yellow wire) controls the speed of the pump.

The actual control voltage range may vary depending on the motor; however, the concept is the same: a 0 Vdc signal would disable the motor, 5 Vdc would represent full speed, and the range between 0 and 5Vdc would adjust the speed of the pump.

How to Integrate Motor Speed Control for Pump Motors in Medical Devices -Analog Speed Control Example- Parker Hannifin - Precision Fluidics Division

 
Speed Monitoring—Tachometer

Many BLDC motors also have the ability to output a tachometer signal so the engineer’s device can monitor the actual pump speed. The signal is a digital pulse that can be used to determine the speed of the pump.

This is useful in applications where the pump will need to operate very slowly; with this information, the device controller could increase the speed if the pump begins to stall (that is, pump speed approaches zero). It also provides additional safety and/or diagnostics feedback for confirming proper system function.

How to Integrate Motor Speed Control for Pump Motors in Medical Devices - Tachometer Output example - Parker Hannifin - Precision Fluidics Division

 

 
Design challenges: control input vs. speed

The speed control signal to the motor can reduce or increase flow; however, it is not a direct linear relationship. For example, at a fixed 50% PWM signal, the speed of the pump will be reduced but not by exactly 50%. Also, as the load on the pump changes, the speed of the pump will also change, even while the PWM signal is fixed.

The maximum motor speed can be reduced by the pump configuration or the pressure/vacuum load on the pump in the application. Torque and speed have a linear relationship; when more torque is required to turn the pump, the motor will slow down.

Motor Stall

Pump motors may be damaged if the pump stalls. When the motor’s rotor is locked in this position and power is being supplied to the motor, heat will increase and can damage the internal controller. When using speed control to reduce speed, a motor stall is more likely and should be closely monitored.

It is recommended that system designers implement a safety current limit or fuse to power the pump. This can help prevent damage to the pump motor and system if a stall event occurs.

Restart with Reduced Speed

Using any speed control method reduces the effective power to the motor. If the speed is reduced during restart, the starting torque will be reduced. Designers must ensure that the pump is capable of restarting under all conditions (such as pressure load and environmental temperature) when the speed is reduced.

Recommended Frequency

When using a PWM speed control method, the recommended frequency is 20 kHz. Frequencies lower than 20 kHz may create an audible buzzing sound as the audible frequency range for humans is 20 Hz to 20 kHz. Using higher frequencies can limit the control range because of transistor rise and fall time; it is possible to switch so quickly that a low or high duty cycle signal appears as 0% or 100% because the transistor cannot switch fast enough. Also, with some motors and control circuits, PWM frequencies greater than 20 kHz can reduce efficiency.

 

Summary

In an era when engineering staffs are shrinking as much and as quickly as the instruments they design, it helps to work with multi-faceted and experienced component suppliers. For example, Parker is a pump supplier that builds most of its own brushless motors. This expertise in both motor and pump design speeds customization and prototype production, which can help shrink engineering timeframes and costs.
 

 

Mini Subcomponents for Medical Devices Make a Big Design Difference - Jamie CampbellArticle contributed by Jamie Campbell, applications engineer – Precision Fluidics Division, Parker Hannifin Co. and was originally published in DesignNews February 2016.

 

 

 

 

Other posts related to medical devices:

Mini Subcomponents for Medical Devices Make a Big Design Difference

How to Dispense Small Volume Liquids With Precision

Why Servo Motors Top Stepper Motors for Precision Liquid Dispensing

 

 

 

 

 

Categories
Recent Posts by Author

New High Pressure Hydraulic Hose Replaces Rubber Hose in Oil and Gas Applications

Products used in the rigorous oil and gas industry must be resilient and of high quality to properly support these complex operations. Hoses and connections need to be safe, versatile and efficient....

Check Valves Are the Unsung Heroes of Fluid Power

Check valves are unseen and undervalued. These valves are found in just about every mobile and industrial hydraulic system on the planet. Simply put, if there’s a pump, most likely you will find...

Important Tips When Selecting Valves For Analytical Instruments

Valve technology has come a long way with many available features. Gas and liquid multimedia valves that are used in chemical analysis such as Gas Chromatography/Mass Spectrometry (GC-MS) and Liquid...
Comments

Have a question about Parker products or services? We can help: Contact Us!

Comments for How to Integrate Motor Speed Control for Pump Motors in Medical Devices

Juan I. Cerrudo
What is the amplitude of the tachometer signal for a 12V pump (Model No C134D-12)?
Thanks!
Jamie Campbell
Hi Juan, The C134D-12 has a 0 to 5Vdc signal for tachometer.
Please contact us by email if you have any further questions at ppfinfo@parker.com

Please note that, in an effort to combat spam, comments with hyperlinks will not be published.

Leave a comment





Captcha