How to Select the Right Motors & Drives for High Speed Spindle Applications

Spindle ApplicationNeed some tips for selecting the optimum motor & drive combination for your latest high-speed spindle application? Read on to find out why this oft-misunderstood process is far simpler than you think.

You will have almost certainly noticed that more and more high-speed electro-spindles on modern machine tools are built using permanent magnet synchronous motors. Why so? Well, quite simply they not only help to reduce the machine footprint, but improve surface finish accuracy and quality as well.

In the first instance, the application must be studied in continuous mode and the design engineer has to define the desired maximum speed, along with the maximum continuous torque to be applied for low speed deep-cut roughing operations, or large diameter machining applications.

However, if the power (torque x speed) is calculated at this early stage, the result will often be so huge that it will exceed what is needed – the drive will be oversized and of course far more expensive than it need be. For this reason, the maximum continuous power required by the spindle must be defined, running with a field weakening mode to limit the drive size

.How to Select the Right Motors/Drives for High Speed Spindle Applications-Torque_Speed_Curve-Parker Automation Group-EME

With this data clearly defined, motor choice becomes easy and should comply with the following properties:

  • The motor must be of a strong suitable build standard to withstand the stress created by the centrifugal force on the magnets and the rotor (up to its rpm limit), The rotors on Parker HKW and MGV motors take advantage of embedded magnets to ensure they can handle centrifugal force.  
  • The selected motor must be able to provide maximum torque at low speeds.
  • It must have a winding configuration capable of providing the necessary power.
  • Finally, it must be able to run in field weakening mode, a quite uncommon attribute of synchronous motors with permanent magnets. Getting this right will ensure you achieve both high torque at low speed and very high maximum speed at constant power.

Tip: When it comes to drives for high-speed applications, always check if it has a field-weakening mode, like Parker HKW and MGV motors. 

How to Select the Right Motors/Drives for High Speed Spindle Applications -HKW - Parker Automation Group - EME            How to Select the Right Motors/Drives for High Speed Spindle Applications -MGV - Parker Automation Group - EME

How to Select the Right Motors/Drives for High Speed Spindle Applications-BEMF Vector Diagram-Parker Automation Group - EME

Field-weakening mode manages the phase advance between the current and the back electromotive force (BEMF) of the motor in accordance with the power requirement.

Select the drive size that provides enough rated current (Io) to the motor in order to generate the maximum torque needed. To calculate this current, divide the desired torque by the torque constant (Kt) of the motor. This is expressed in Nm/Arms.

How to Select the Right Motors/Drives for High Speed Spindle Applications-Drives size formula-Parker Automation EME

Take note that as the size increases, the output frequency has a nasty habit of decreasing. For this reason you should double-check the drive’s ability to provide sufficient frequency. Here, you should calculate the minimum frequency requested by the motor to reach maximum speed.

How to Select the Right Motors/Drives for High Speed Spindle Applications-Minimum Frequency formula-Parker Automation EME

The result must be less than or equal to the maximum output frequency of the drive. This is not to be confused with the PWM frequency of the drive that corresponds to the switching frequency.

The next step only applies to synchronous motors with magnets, largely because of their potential to reach high voltages. During high speed operations, the BEMF of the motor must be below the maximum DC voltage of the drive’s power bus. Typical power bus values are 540 VDC for a 400 VAC power supply. As a general guide, avoid exceeding 800 VDC. Check the voltage value of the motor’s BEMF at maximum speed. This limit is given by another motor constant Ke expressed in Vrms / 1000rpm:

How to Select the Right Motors/Drives for High Speed Spindle Applications-BEMF formula-Parker Automation EME

The results are best plotted in vector diagrams showing axe mode, field weakening mode below the maximum voltage of the drive, and field weakening mode beyond the maximum voltage of the drive.


How to select the right motors/drives for high speed spindle applications-vectorial diagrams-Parker Automation-EME

The latter will show if the BEMF is over the drive limit due the high maximum speed. In this case a protection module has to be added. This is because, in the event of an incident or power supply failure, the motor can become a generator (driven by the load inertia). Here, the BEMF is on the terminals of the drive and, at extreme speeds, the motor and the drive will be damaged by excessive voltage. A protection module will short-circuit the motor or clip the motor voltage accordingly. Of course, the protection module and the drive must be capable of withstanding the short-circuit of the motor current to ensure integrity. The motor, the drive and the protection module have a maximum voltage limit (around 2000V).

The following chart will guide you through the process:

How to Select the Right Motors/Drives for High Speed Spindle Applications - Selection flowchart - Electromechanical Division - Parker Automation Group

We're here to help

Follow this link to get assistance in selecting the right motor/drive for high-speed spindle applications or learn more about the latest technologies in motors and drives for high speed.spindle applications.

Olivier Delor

This article was contributed by Olivier Delor, Product Manager Motors, Electromechanical Division, Parker Hannifin Corporation.




Related articles

What You Should Know About Frameless Motors

What’s Trending in Industrial Automation?

The Power of Gears to Lower Motion System Cost




Recent Posts by Author

Electromechanical and Drives Technology - A Look Back on 2019

Thanks to our loyal followers for all of the interest in the topics covered in this blog over the past year. In examining the most-read blog posts over the course of 2019, it becomes obvious that...

Time-Saving Solution for Servo Presses and Joining Applications

In industry, time is money. So, for engineers who are time-pressured, there is a solution for electromechanical press and joining applications. Push-To-Fit is an innovative electromechanical solution...

High-load Rodless Actuators Powering the Factory Automation Revolution

The arguments advocating more automation in our factories and process plants are gaining momentum and translating into a revolution in production environments.  Parker designs automated linear motion...

Have a question about Parker products or services? We can help: Contact Us!

Comments for How to Select the Right Motors & Drives for High Speed Spindle Applications

Please note that, in an effort to combat spam, comments with hyperlinks will not be published.

Leave a comment