Gas Generation

Pressure Swing Adsorption Technology as an Alternative to Conventional Air Separation Part 3 of 3

A bank of gas cylindersSwitching from bottled or liquid nitrogen to a pressure swing adsorption (PSA) system as a way to source pure nitrogen (N2) can result in energy and cost savings, as well as reduced CO2 emissions when compared to the conventional air separation process of fractional distillation. 

Large air separation plants use fractional distillation of air to generate nitrogen. This is energy intensive because the ambient air must first be condensed into liquid air by cooling and compressing it.  The separated nitrogen must then be purified to the desired level (discussed in Part 1 of this series). Next, the nitrogen is transported to the location where it will be used.  Then, the empty tanks must be transported back to the production facility to be refilled.  Transportation of the tanks uses a significant amount of energy, which is expensive.  Because the process of generating nitrogen is performed on a continuous, large scale basis, large amounts of CO2 emissions are released. CO2 is believed to be a greenhouse gas with a significant unfavorable impact on worldwide climate change.

A PSA system on the other hand, produces nitrogen at room temperature using house compressed air which requires less energy. Additionally, a generator operates on premises, meaning there is no transportation involved.

How PSA Technology WorksA PSA nitrogen generation system separates nitrogen from oxygen based on the preferential adsorbtion and desorption of oxygen and other contaminants on carbon molecular sieve. Pressurized air is passed through a vessel filled with carbon molecular sieve that adsorbs oxygen while the nitrogen passes through the vessel. Once the molecular sieve is saturated with oxygen, the pressure is lowered and the contaminants which have been trapped (including oxygen, CO2, and water vapor) are released to atmosphere. Carbon molecular sieve has a high degree of microporosity making it ideal for oxygen adsorption. To obtain a continuous flow of N2 and maximize system utility, two vessels are connected in parallel, so that one vessel is providing nitrogen to the system while the other vessel is being regenerated.

PSA systems offer many of the same benefits as hollow fiber membrane systems (discussed in Part 2 of this series) including an uninterrupted nitrogen supply, consistent purity, reduced costs, and freedom from dependence on outside vendors. Generally, a PSA system would be used over a membrane system when the application requires higher purities (>99%).

An energy consumption comparison

Using data from the European Industrial Gas Association (EIGA) as published in EIGA Position Paper PP-33, December 2010, it’s possible to compare the PSA method with the fractional distillation method on the basis of energy consumed.

The EIGA notes that an air separation plant uses 1976 kJ of electricity per kilogram of nitrogen produced (99 percent purity) versus 1420 kJ for PSA — or 28 percent less. For applications only requiring 98 percent purity the contrast is even greater: 1976 kJ versus 759 kJ — or 62 percent less.

Read White Paper that discusses a sustainable approach to the supply of nitrogen.

This is Part 3 of a 3 part series on a sustainable approach to the supply of nitrogen.  Following are links to the rest of the series: 

Nitrogen Generation using an In House Generator vs Fractional Distillation Part 1 of 3

 
This series was written by Peter Froehlich, PhD, Peak Media, Inc.; David Connaughton, Product Manager Membrane Systems, Parker Hannifin; Joshua Benz, Development Engineer, Parker Hannifin; and Kim Myers, Global Product Manager, Analytical Gas Systems, Parker Hannifin.
Categories
Recent Posts by Author

Optimum Nitrogen Purity for Modified Atmosphere Food Packaging

Modified atmosphere packaging is now a prerequisite for many food products, extending shelf life, appearance and taste by preventing or retarding spoilage mechanisms. Quite simply, modified...

Three Key Reasons Why Gas Generators are the Safest Option in Laboratories

Laboratories around the world require a reliable and consistent mixture of quality gases for a range of applications including gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS)....

Simple Safety Steps to Follow When Installing a Nitrogen Generator

A question that is frequently asked when considering the installation of a nitrogen gas generator is "will the system create an oxygen rich or oxygen deficient atmosphere that could be potentially...
Comments

Have a question about Parker products or services? We can help: Contact Us!

Comments for Pressure Swing Adsorption Technology as an Alternative to Conventional Air Separation Part 3 of 3


Please note that, in an effort to combat spam, comments with hyperlinks will not be published.

Leave a comment





Captcha