Process Control

Smarter Instrument Mounting Using Close-Coupling Techniques

Smarter Instrument Mounting Using Close-Coupling Techniques, Application Image, Instrumentation Products DivisionInnovations in the design of primary isolation valves and manifolds for mounting pressure instrumentation can deliver enormous pressure control advantages to both instrument and piping engineers, ranging from significantly enhanced measurement accuracy to simpler installation and reduced maintenance. Parker created a comprehensive range of instrument manifold mounting solutions for the main types of pressure instrumentation, employing close-coupling techniques that eliminate impulse lines and tube fittings to improve overall instrument performance and reliability.

 

Smarter Instrument Mounting Using Close-Coupling Techniques | Download White Paper | Parker Instrumentation Products DivisionDownload our white paper Lowest Cost of Ownership Close-Coupling Techniques for Enhanced Instrument Mounting Solutions to learn how to improve instrument performance and reliability by applying a close-coupled mounting approach.

 

What is close-coupling?

There is no formal definition for close-coupling, but it has come to mean any instrument mounting system that enables a user to connect an instrument directly on to the process line, and primary flow control isolation valve. The overriding objective of this is to optimise the accuracy of measurement, by eliminating the long runs of tubing, tube fittings, and bends and joints between process pipe and instrument that can cause pressure drops, and gauge/ impulse line errors.

Transmitter ‘hook-ups’ are often configured individually for each application, and can be large, heavy, and difficult to install. By replacing such arrangements with purpose-designed close-coupled manifold/mounting solutions, users are able to optimise accuracy and reap a whole range of additional benefits such as:

  • Increased transmitter accuracy and repeatability by eliminating impulse lines,

  • Reduced size and weight, less stress on the process pipework,

  • Easy winterisation, no heat traced impulse lines to power up or freeze,

  • Faster installation, and the option of transmitter assembly and testing,

  • Reduced maintenance, and higher instrument uptime,

  • Elimination of threaded connections,

  • Simpler design with fewer components and fewer leak paths,

  • No risk of impulse lines blocking, as impulse lines are eliminated, and

  • Pre-engineered compact design eliminates the need for impulse line field design.

 

Faster process measurement

‘Hook-ups’ for pressure transmitters often involve the custom configuration of complex arrangements of tubing, with multiple connections and valves. Measurement errors can be introduced as a result of long length impulse lines. These errors are frequently compounded by the use of the different tube, fitting, and valve components whose diameters may vary throughout an instrument installation.

Inaccuracies can distort the pressure impulse signal, causing errors of up to 15% (on flow measurements).

Smarter Instrument Mounting Using Close-Coupling Techniques, Traditional Hook Up, Instrumentation Products DivisionTraditional ‘hook-up’ for a differential pressure transmitter

This traditional solution uses two sets of valve assemblies to create the double block and bleed valves, which are connected with impulse lines and connectors to the instrument manifold. It involves numerous discrete components, with all the associated costs and assembly time, and introduces bends that cause attenuation and turbulence that can affect measurement accuracy. If not carefully specified, other measurement accuracy problems can arise from differences in bore diameters of the various components, and unequal lengths of tubing.

 

The close-coupled alternative

Smarter Instrument Mounting Using Close-Coupling Techniques, Close-Couples Technique, Instrumentation Products Division

  • A short and straight flow path to an instrument from the process increases transmitter accuracy.

  • Integration of the manifold into the double block and bleed valve eliminates numerous leak paths.

  • No hook-up drawings or Bill of Materials are required to create an instrument hook-up.

  • Assembly takes only minutes compared to hours with a conventional impulse line system.

  • Low maintenance system, which is very easy to maintain if required.

  • Smaller and lighter assembly places much less stress on the pipework.

 

Smarter Instrument Mounting Using Close-Coupling TechniquesDownload our white paper Lowest Cost of Ownership Close-Coupling Techniques for Enhanced Instrument Mounting Solutions to learn how employing close-coupling techniques can improve process instrumentation performance and reliability. 
 

View the Parker Close-Coupled Instrument Mounting System here.

 

 

 

Smarter Instrument Mounting Using Close-Coupling Techniques, Jim Breeze, Instrumentation Products DivisionJim Breeze is product manager, Instrumentation Connections and Process Valves, Instrumentation Products Division, Europe.

 

 

 

 

 

Related content:

10 Tips to Ensure Best Practice in the Installation of Condensate Pots

Manifold Connector Technology – Why Settle for Second-best?

Equipment Winterization Techniques

How to Avoid H2S Embrittlement in Instrumentation Connections

Choosing the Right Connector, Tubing and Accessories for Your Application - Part 1

CCIMS Close Couipled Instrument Mounting Solutions

Have a question about Parker products or services? We can help: Contact Us!

Comments for Smarter Instrument Mounting Using Close-Coupling Techniques

JOHN MULINDI
Have seen this mounting technique before, but never new it was named close-coupling technique. Thanks for sharing your insights.

Please note that, in an effort to combat spam, comments with hyperlinks will not be published.

Leave a comment





Captcha