Sealing Shielding

The Difference Between Thermal Conductivity and Thermal Impedance

The Difference Between Thermal Conductivity and Thermal Impedance, Parker Chomerics DivisionThermal Interface Materials (TIMs) are useful for thermal management in electronic components, as they enhance heat transfer from a heat-generating component to a heat dissipater, or heat sink. One important aspect when selecting a TIM for your application is knowing the material’s ability to transfer heat, which is often given by way of thermal conductivity and/or thermal impedance.

Across the industry, manufacturers often publish thermal conductivity in units of Watts / meter-Kelvin as well as thermal impedance in units of °C – inches2 / Watt on their datasheets. So, what is the difference between these two, and how should you consider them when selecting a TIM?

Thermal conductivity is a material property and describes the ability of the given material to conduct heat. Therefore, when a material’s thermal conductivity is high, the material is a better thermal conductor. This property is independent of material size, shape or orientation in a homogeneous material, and because of this, thermal conductivity is an idealized value.

To understand thermal impedance, we must first understand thermal resistance and thermal contact resistance.

  • Thermal resistance is another inherent thermal property of a material, and is the measure of how a material of a specific thickness resists the flow of heat. Since TIM thickness is directly related to the resistance, thinner TIMs transfer heat more efficiently than thicker ones.
  • Contact resistance is specific to the interfaces where a TIM meets the heat-generating component and the heat sink. In reality, neither of these components are perfectly flat or smooth, therefore these surface irregularities create micro-air voids when in contact with the interface material, reducing the effectiveness to transfer the heat (air is a very poor thermal conductor).

Therefore, the thermal impedance of a material is the sum of its thermal resistance and all contact resistances. When a material’s thermal impedance is lower, the material is a better thermal conductor in that application. Based on this, it is understandable that factors such as surface roughness, surface flatness, clamping pressure, presence of adhesive, non-homogeneous, and material thickness all have large impacts on the material’s thermal impedance. Thus, thermal impedance is a better “real world” thermal property, as it accounts for more variables specific to the application.

In summary, when comparing different TIMs for a specific application, you can begin with thermal conductivity for general comparisons, but having thermal impedance versus pressure data will be far more accurate to your “real world” conditions.

The Difference Between Thermal Conductivity and Thermal Impedance, Parker Chomerics Division

 

 

 

 

 

 

 

 

For more information, visit Parker Chomerics Division or contact us directly. 

 

The Difference Between Thermal Conductivity and Thermal Impedance, Jarrod Cohen Head Shot

 

 

This blog was contributed by Jarrod Cohen, marketing communications manager, Parker Chomerics Division.

 

 

Related Content:

New Thermal Gel Benefits Consumer and Automotive Applications

New High Performance Compound for Automotive Applications

The Benefits of Thermally Conductive, Fully Cured Dispensable Gel

Categories
Recent Posts by Author

Is an ASTM Callout the Best Way to Specify Your Elastomer Needs?

I have had many discussions with customers as to the value of using an ASTM elastomer compound description on their prints to define a specific application or elastomer requirement versus listing...

Large-Size PTFE Seals Withstand Aggressive Media and High Temperatures

Seals made of the fluoropolymer PTFE are used where many other sealing materials (such as rubber elastomers, polyurethanes, fabric-reinforced elastomer seals, etc.) reach their limits in terms of...

5 Design Considerations for EMI and Weather Sealing Combination Gaskets

Combination electromagnetic interference (EMI) shielding and weather gaskets, more commonly known as EMI shielded combo strip gaskets, are an excellent choice for a variety of applications that...
Comments

Have a question about Parker products or services? We can help: Contact Us!

Comments for The Difference Between Thermal Conductivity and Thermal Impedance


Please note that, in an effort to combat spam, comments with hyperlinks will not be published.

Leave a comment





Captcha