Compressed Air Gas Treatment

The Importance of Maintaining CO2 Gas Quality in Bottling Applications | Case Study

 

The Importance of Maintaining CO2 Gas Quality in Bottling Applications - Case Study - Bottles of Beer - Parker Gas Separation and Filtration Division EMEASnap open a bottle of soda or beer and you will see, hear and feel the familiar fizz and bubbles. These sensations are the result of carbon dioxide (CO2), a colorless, odorless, non-combustible gas. In the beverage industry, CO2 is typically used to carbonate soft drinks and soda water. While the main natural carbonation of beer occurs during the fermentation process, it is necessary to add CO2 to beer after the filtration process to ensure the content is always the same. Beer that is settled may also require forced carbonation prior to bottling.

Adding carbon dioxide to a beverage carries the risk of product contamination with potentially expensive consequences including off-flavors and odors, spoilage, product recalls and damaged reputation. 

 

Sources of CO2 contamination

Oil vapour and grease

Atmospheric air contains oil vapour derived from industrial processes and vehicle exhaust. Oil and grease can also emanate from compressors and transfer pumps. This oil vapour is drawn into the compressor intake and moves through the intake filter. Once inside the CO2 distribution system, the oil vapour will cool and condense into liquid oil.

Plasticiser compounds

Liquid CO2 is an extremely effective solvent that can easily extract plasticiser compounds from flexible hoses and rubber gaskets.

Rust and pipescale

Rust and pipscale are caused by the presence of water in liquid CO2 storage tanks and distribution piping. Over time, the rust and pipescale breaks away and contaminates the CO2. This can be particularly problematic in older piping systems previously operated with inadequate or no purification equipment.

 

The Importance of Maintaining CO2 Gas Quality in Bottling Applications - Case Study - Bottling Plant Graphic - Parker Gas Separation and Filtration Division EMEA

 

Typical impurities found in CO2

Typical impurities found in CO2 sourced from fermentation processes and the off-flavours associated with them include:

  • Acetaldehyde - present in all beers. Typical apple off-flavour at high concentrations.
  • DMS - desirable characteristic of some pale lager beer styles. Typical corn off-flavour in some beers.
  • Benzene - carcinogenic compound. Regulatory control not detected at low levels by taste or smell.
  • Iso-Amyl - present in most beers. Typical banana off-flavours occur at ppm levels. 

 

The consumer experience

Foul taste, odors and off-appearance will also change the way the consumers view the product and may alter their decision to buy more of it — directly impacting the manufacturer’s bottom line. Left unchecked, this can have a dramatic impact on their reputation and success in the market. It is the responsibility food and beverage manufacturers to take appropriate steps to protect the quality of the carbon dioxide and ensure consumers consistently experience a high-quality, desirable product.

 

CO2 quality guidelines

The International Society of Beverage Technologists (ISBT) is an organization dedicated to the promotion, development, and dissemination of knowledge relating to the art and science of beverage technology. The ISBT has developed quality guidelines to provide guidance for carbonated beverage manufacturers and CO2 suppliers on key characteristics for quality and purity of CO2 when used as a direct food additive in beverages.

 

CO2 contaminant removal

Traditional methods for CO2 contamination removal consisted of passing the gas through an activated carbon bed. Recent improvements with on-site analytical equipment have revealed that this method cannot maintain the required gas quality.

Working with the International Society of Beverage Technologists (ISBT), to gain a better understanding of the contaminants affecting CO2 and the maximum allowable levels Parker domnick hunter developed a multiple stage purifier that would essentially take out-of-specification, beverage-grade CO2 and bring the quality of gas back within an acceptable quality standard.

 

The Importance of Maintaining CO2 Gas Quality in Bottling Applications - Case Study - Download Case Study Button - Parker Gas Separation and Filtration Division EMEAMahou San Miguel Company: A commitment to quality

 

With a history that goes back 125 years and a presence in more than 70 countries, family-owned Mahou San Miguel produces over 70% of the Spanish beer consumed worldwide. Meeting and exceeding customers’ expectations through innovation and technology is a key driver for the company.

To maintain its distinguished status and provide the best possible customer experience, Mahou San Miguel partnered with Parker to ensure the CO2 used in all steps of its manufacturing process is 100% compliant with all regulations and requirements.

“We installed the equipment for safety, in all our plants, the CO2 used in all steps of the process is recovered from the fermentation process, even though we have the most modern facilities and controls to recover and ensure the quality of CO2, there is no compromise with quality.”

— Mr Santiago Vitón Hernanz, manager of beer technology, Mahou San Miguel, Madrid

 

Quality guaranteed

The Importance of Maintaining CO2 Gas Quality in Bottling Applications - Case Study - PCO2 Carbon Dioxide Quality Incident Protection System - Parker Gas Separation and Filtration Division EMEATo ensure CO2 quality assurance, a Parker PCO2 Carbon Dioxide Quality Incident Protection System was installed. The system offers in-line quality incident protection against peak levels of trace impurities in beverage-grade CO2. The PC02 offers six stages of CO2 protection from a compact, modular system — guaranteeing the highest level of production plant and point-of-use protection.


Stage 1 – 0.01 micron particle filtration removes NVOR and other contaminants down to 0.01 ppm.

Stage 2 – Removal of water vapour and partial removal of hydrocarbons.

Stage 3 – Primary removal of aromatic hydrocarbons and acetaldehyde.

Stage 4 – Removal of sulphur compounds.

Stage 5 – 0.01 micron particle filtration to prevent adsorbent particulate carryover into CO2 stream.

Stage 6 – Optional point of use sterile gas membrane required when CO2 source or application of CO2 is at higher risk from a microbiological perspective.

 

PC02 system removal efficiencies at each stage

The Importance of Maintaining CO2 Gas Quality in Bottling Applications - Case Study - PCO2 System Removal Efficiencies - Parker Gas Separation and Filtration Division EMEA

 

Features and benefits:

  • Performance validation by Lloyd’s Register verifies removal of up to 10 times the ISBT guidelines for stated impurities.
  • Carbon dioxide quality guaranteed.
  • Protection against impurities known to create beverage flavor defects helps avoid product spoilage and protects bottler's reputation.
  • Ensures carbon dioxide meets industry and company specifications and guidelines. Cleans out-of-specification gas back within beverage quality guidelines.
  • International sales and service support.

 

The Importance of Maintaining CO2 Gas Quality in Bottling Applications - Case Study - Case Study - Parker Gas Separation and Filtration Division EMEARead the case study. For additional information about PCO2 Carbon Dioxide Quality Incident Protection System, please visit our website.

 

 

 

 

 

 

 

The Importance of Maintaining CO2 Gas Quality in Bottling Applications - David Sykes - Parker Gas Separation and Filtration Division EMEAThis blog was contributed by David Sykes, marketing communications team leader, Parker Gas Separation and Filtration Division, United Kingdom.

 

 

 

Related posts

Nitrogen Gas Generators Save Winemakers Time and Money

 

 

Vineyard Selects Nitrogen Gas Generator for Return on Investment and Ease of Use

 

 

Are You Ready for an Audit? Is Your Plant Compressed Air in Compliance with GFSI, SQF, and BRC Codes? Part 1 of 6

 

Is the Compressed Air in Your Food Plant Safe?

 

 

Does Purity of Nitrogen Purge Affect the Dissolved Oxygen Pickup of Wine?

 

 

Categories
Recent Posts by Author

Differential Pressure Gauges on Filters - How and When to Take Accurate Readings

Your filter has a differential pressure gauge or a pop-up indicator on the top of it. Great, but what is it telling you? Here are a few helpful hints to understand how these indicators work, what...

The Importance of Maintaining CO2 Gas Quality in Bottling Applications | Case Study

  Snap open a bottle of soda or beer and you will see, hear and feel the familiar fizz and bubbles. These sensations are the result of carbon dioxide (CO2), a colorless, odorless, non-combustible gas....

Portable Rental Air Dryer for Short-Term Compressed Air Requirements

Compressed air is a major source of energy used in a wide variety of applications across many industries. A plant compressed air system can be costly to operate. Optimizing productivity while reducing...
Comments

Comments for The Importance of Maintaining CO2 Gas Quality in Bottling Applications | Case Study


Please note that, in an effort to combat spam, comments with hyperlinks will not be published.

Leave a comment





Captcha